

Episodic N_2O emissions following tillage of a legume-grass cover crop mixture

Alison Bressler¹, Jennifer Blesh¹

¹School for Environment and Sustainability, University of Michigan, Ann Arbor, 48104, USA

5 Correspondence to: Alison Bressler (asbressl@umich.edu)

Abstract. Nitrogen fertilizer inputs to agricultural soils are a leading cause of nitrous oxide (N2O) emissions in the U.S. Legume cover crops are an alternative N source that can reduce agricultural N₂O emissions compared to fertilizer N. However, our understanding of episodic N₂O flux following cover crop incorporation by tillage is limited and has focused on single species cover crops. Our study explores whether increasing cover crop functional diversity with a legume-grass mixture can reduce pulse emissions of N₂O following tillage. In a field experiment, we planted crimson clover (Trifolium incarnatum L.), cereal rye (Secale cereal L.), a clover-rye mixture, and a no-cover control at two field sites with contrasting soil fertility properties in Michigan. We hypothesized that N₂O flux following tillage of the cover crops would be lower in the mixture and rye compared to the clover treatment, because rye litter can decrease N mineralization rates. We measured N₂O for approximately two weeks following tillage to capture the first peak of N₂O emissions in each site. Across cover crop treatments, the higher fertility site, CF, had greater cover crop biomass, twofold higher aboveground biomass N, and higher cumulative N_2O emissions than the lower fertility site, KBS (413 ± 67.5 g N_2O -N ha⁻¹ vs. 230 ± 42.5 g N_2O -N ha⁻¹; P = 0.0037). There was a significant treatment effect on daily emissions at both sites. At CF, N₂O fluxes were higher following clover than the control 6 days after tillage. At KBS, fluxes from the mixture were higher than rye 8 and 11 days after tillage. When controlling for soil fertility properties across sites, clover and mixture led to approximately twofold higher N₂O emissions compared to rye and fallow treatments. We found partial support for our hypothesis that N₂O would be lower following incorporation of the mixture than clover. However, treatment patterns differed by site, suggesting that interactions between cover crop functional types and background soil fertility influence N₂O emissions during cover crop decomposition.

1 Introduction

Nitrogen (N) losses from grain agroecosystems contribute to climate change through nitrous oxide (N₂O) emissions (Robertson and Vitousek, 2009). In the U.S., approximately 75% of N₂O emissions come from agricultural soils (USEPA, 2021), and the amount of N added to soil from synthetic fertilizers is the primary driver of these high emissions (Millar et al., 2010; Han et al., 2017; Eagle et al., 2020). Diversified grain rotations with legume N sources have lower potential for N losses compared to fields with synthetic fertilizer inputs (Drinkwater et al., 1998; Blesh and Drinkwater, 2013; Robertson et al., 2014). Legumes can be added to rotations as cover crops, which are unharvested crops typically planted in the fall and terminated in the spring

https://doi.org/10.5194/bg-2022-39

Preprint. Discussion started: 21 February 2022

© Author(s) 2022. CC BY 4.0 License.

in temperate regions. As an organic N source, legume litter supplies organic substrates to support microbial processes that can increase soil organic matter (SOM) pools and N retention in SOM (Drinkwater et al., 1998; Syswerda et al., 2012; Blesh and Drinkwater, 2013). Further, diversified rotations with legume N sources could reduce or replace the use of synthetic N fertilizers, thereby reducing greenhouse gas emissions associated with fertilizer production and application (Norskov and Chen, 2016).

35

Two key factors that affect N_2O emissions are soil disturbance through tillage and crop functional traits (Gelfand et al. 2016). The timing and rate of N release from different cover crop functional types (*i.e.*, C4 vs C3 grasses, N fixing legumes) during decomposition affects the potential for N losses (Millar et al., 2004; White et al., 2017), through effects on soil N availability. It is well established that the biochemical composition of plant litter is a key driver of microbial decomposition dynamics and N mineralization rates (*i.e.*, lignin, cellulose and protein content; C:N; *sensu* Melillo et al., 1982). Consequently, legume cover crops may result in higher production of N_2O after disturbances like tillage compared to cover crops that include non-legume species (Alluvione et al., 2010; Huang et al., 2004; Millar et al., 2004). The effects of C:N on N mineralization and N_2O flux may be particularly evident when comparing sole legumes with lower ratios (e.g., C:N < 15) to grass cover crops with higher C:N (e.g., > 30) (Baggs et al., 2003). Prior research on legume-grass mixtures – which can have residues of intermediate C:N (e.g., 15-25) – revealed that they reduced N leaching compared to sole legumes, while enhancing N supply compared to sole grasses, providing multiple ecosystem functions (Kaye et al., 2019). However, there is limited data on N_2O losses following cover crops in organically managed agroecosystems, and the effects of mixtures of complementary functional types on N_2O emissions are poorly understood.

50 Uı

Understanding the timing of N₂O emissions is also key to reducing N losses from crop rotations (Wagner-Riddle et al., 2020). Millar et al. (2004) found that N₂O fluxes are episodic in corn rotations with legumes as the sole source of new N. Specifically, 65-90% of N₂O emissions occurred during the first 28 days following tillage of legume cover crops, over an 84-day measurement period. Similarly, Gelfand et al. (2016) observed high temporal variability in N₂O fluxes measured for 20 years in different annual cropping systems and suggested that emissions following tillage were a primary driver of this variation in the two agroecosystems with cover crops. Therefore, there is a need to measure N₂O in the weeks following cover crop termination to understand pulse N₂O fluxes, particularly when legumes are the sole, or primary, source of N additions. Further, to our knowledge no studies have tested whether legume-grass mixtures reduce pulse N₂O during this critical period compared to sole-legume cover crops.

60 Va

Variability in soil conditions also plays an important role in soil N_2O flux. Edaphic characteristics, such as soil texture (Gaillard et al., 2016), SOC (Bouwman et al., 2002; Dhadli et al., 2016), and interannual rainfall patterns can often explain more variation in N_2O emissions than treatment differences (Basche et al., 2014; Ruser et al., 2017). One study with synthetic N fertilizer additions on clayey Oxisols in Brazil found higher N_2O losses from more intensively managed fields with lower labile SOM

https://doi.org/10.5194/bg-2022-39

Preprint. Discussion started: 21 February 2022

© Author(s) 2022. CC BY 4.0 License.

65

70

Biogeosciences

Discussions

fractions and total C content (de Figueiredo et al., 2017). In fields with organic N sources, SOM fractions with relatively short turnover times (i.e., years to decades) likely influence N mineralization following cover crop incorporation and resulting N₂O emissions. Free particulate organic matter (fPOM) and occluded particulate organic matter (oPOM), which is physically protected in soil aggregates, are both indicators of nutrient cycling capacity in soil (Marriott and Wander, 2006). Prior studies have found that POM N concentrations are positively correlated with potential N mineralization rates (Blesh, 2019), and that this relationship varies with soil texture and management history (Luce, 2016). It is therefore critical to assess N₂O emissions in different soil conditions, such as SOM, POM, and nutrient stocks, which reflect land management histories.

In this field experiment, we assessed the effects of a legume-grass cover crop mixture on agroecosystem N cycling processes compared to either species grown alone during the first flux of N_2O following tillage. The experiment was conducted at two sites in Michigan with contrasting soil fertility properties. Our specific objectives were to: (1) quantify cover crop functional traits, including C:N and legume N inputs from biological N fixation (BNF) and (2) test the effects of cover crop treatment on pulse N_2O fluxes following spring tillage, when emissions are expected to be greatest in agroecosystems that rely on legume N sources. Our hypothesis was that the legume-grass mixture would result in lower pulse N_2O fluxes than the sole-planted legume due to a higher C:N and a smaller new N input to soil from BNF.

2 Materials and Methods

2.1 Site description and experimental design

The study was conducted on two sites in two regions of Michigan, USA. The first site (*CF*) was located at the University of Michigan's Campus Farm (Lat/Long: N 42° 17' 47", W 83° 39' 19" Elevation: 259.08 m), was previously in a grass fallow with periodic mowing for over 45 years. The experiment at *CF* was conducted in the 2017-2018 overwintering cover crop season. The site resides on a glacial till plain with well drained sandy loam soils in the Fox series which are mixed, superactive, mesic Typic Hapludalfs. The soil had 2.5% organic matter, 21.5% clay, and a pH of 6.35. The site received 1030 mm of rainfall during the experiment (August 2017 – September 2018) with an average temperature of 10.2 °C. The second site (*KBS*) was located in the biologically-based cropping system in the Main Cropping System Experiment (MCSE) of the Kellogg Biological Station Long-Term Ecological Research site (Lat/Long: N 42° 14' 24", W 85° 14' 24" Elevation: 288 m). The field has been in a corn-soy-winter wheat rotation managed using organic practices for over 30 years. The experiment at *KBS* was conducted in the 2019-2020 overwintering cover crop season. *KBS*'s soil resides on a glacial outwash plain with well drained loam, sandy loam, and sandy clay loam soils in the Kalamazoo and Oshtemo series which are mixed, mesic Typic Hapludalfs (Crum and Collins, 1995). The soil had 1.74% organic matter, 19.4% clay, and a pH of 6.59. The site receives an average of 933 mm yr⁻¹ with an average temperature of 9.2 °C. Neither field received any fertilizer or manure applications before or during the experiment.

© Author(s) 2022. CC BY 4.0 License.

95

100

105

110

125

In a randomized complete block design, we planted four cover crop treatments in 4.5 x 6 m plots in *CF*: (1) cereal rye (seeding rate: 168 kg ha⁻¹), (2) crimson clover (seeding rate: 34 kg ha⁻¹), (3) clover-rye mixture (seeding rate: 67 kg ha⁻¹ rye, 17 kg ha⁻¹ clover) (4) and a weedy fallow control, in four blocks by broadcasting seed on 16 August 2017. We planted four cover crop treatments into 3.1 x 12.2 m plots in *KBS*: (1) cereal rye (seeding rate: 100.9 kg ha⁻¹), (2) crimson clover (seeding rate: 16.8 kg ha⁻¹), (3) clover-rye mixture (seeding rate: 50.4 kg ha⁻¹ rye, 9.0 kg ha⁻¹ clover) (4) and a weedy fallow control, in four blocks with a grain drill on 31 July 2019. Seeding rates were reduced for the site planted with a grain drill due to higher likelihood of germination. The cover crops overwintered and were rototilled into the soil on 24 May 2018 (*CF*) and on 26 May 2020 (*KBS*) followed by corn planting on 14 June 2018 (*CF*) and on 1 June 2020 (*KBS*). Cover crops had 4,501 growing degree days at *KBS* and 3,898 at *CF*.

2.2 Baseline Soil Sampling

Prior to planting, we collected a composite, baseline soil sample for each replicate block at CF, and for each treatment plot within each replicate block at KBS, to determine initial soil conditions and characterize soil fertility status at both experimental sites. In each plot, we estimated bulk density from the fresh mass of 10 composited soil cores (2 x 20 cm) and adjusted for soil moisture, determined gravimetrically. Subsamples of ~ 50 g were also analysed for soil texture using the hydrometer method. Air-dried soil was mixed and soaked with 100 mL of sodium hexametaphosphate and blended for 5 min. The mixture was transferred to a glass sedimentation cylinder and filled to the 1L mark with tap water. The slurry was mixed with a metal plunger and hydrometer readings were taken 40 seconds and 2 hours after the plunger was removed. Percent sand was calculated from the 40 second reading and percent clay from the 2-hour reading.

At sampling, we sieved a subsample of fresh soil to 2 mm and measured extractable and potentially mineralizable N in triplicate for each soil sample. We immediately extracted inorganic N (NO₃⁻ + NH₄⁺) in 2 mol/L KCl. The amount of NO₃⁻ + NH₄⁺ in each sample was analysed colorimetrically on a discrete analyser (AQ2; Seal Analytical, Mequon, WI). We also performed a 7-day anaerobic N incubation and then extracted NH₄⁺ in 2 mol/L KCl. Soil weights for extractions and incubations were adjusted for soil moisture. Potentially mineralizable N (PMN) was calculated by subtracting the initial amount of NH₄⁺ in the soil from the NH₄⁺ released during the 7-day incubation (Drinkwater et al., 1996).

Particulate organic matter (POM) (> 53 μm) was separated from triplicate 40-g subsamples of unsieved, air-dried soil based on size and density (Marriott and Wander, 2006; Blesh, 2019). To isolate the light fraction POM (also called free POM or fPOM), the subsamples were gently shaken for 1 hour in sodium polytungstate (1.7 g/cm3), allowed to settle for 16 hours, and free POM floating on top of the solution was removed by aspiration. To separate the physically protected, or occluded, POM fraction (oPOM), the remaining soil sample was shaken with 10% sodium hexametaphosphate to disperse soil aggregates and then rinsed through a 53-μm filter (Marriott and Wander, 2006). Protected POM was then separated from sand by decanting.

140

145

150

155

The C and N of both POM fractions (fPOM and oPOM) were measured on an ECS 4010 CHNSO Analyzer (Costech Analytical Technologies, Valencia, California, USA). Total soil C and N (to 20 cm) were measured by dry combustion on a Leco TruMac CN Analyzer (Leco Corporation, St. Joseph, Michigan, USA) (Blesh, 2019).

2.3 Aboveground biomass sampling and analysis

We sampled aboveground biomass from all treatments on 22 May 2018 (*CF*) and on 26 May 2020 (*KBS*), from one 0.25 m² quadrat randomly placed in each plot, avoiding edges. Shoot biomass was cut at the soil surface, separated by species (with weeds grouped together), dried at 60 °C for 48 hours, weighed, and coarsely ground (< 2 mm) in a Wiley mill. We analyzed the biomass for total C and N by dry combustion on a Leco TruMac CN Analyzer (Leco Corporation, St. Joseph, MI).

2.4 Legume N fixation by natural abundance

We estimated BNF by crimson clover using the natural abundance method (Shearer & Kohl, 1986). Biomass from the clover in monoculture and mixture and rye in monoculture (the non- N_2 fixing reference plant), were collected in the field, dried, weighed, and finely ground (<0.5 mm). Samples were analyzed for total N and δ^{15} N enrichment using a continuous flow Isotope Ratio Mass Spectrometer at the UC Davis Stable Isotope Facility. The percent N derived from the atmosphere (i.e., %Ndfa) was calculated using the following mixing model Eq. (1):

$$%Ndfa = 100 \times ((\delta^{15}N_{ref} - \delta^{15}N_{legume}) / (\delta^{15}N_{ref} - B)),$$
(1)

where $\delta^{15}N_{ref}$ is the $\delta^{15}N$ signature of the reference plant (rye), $\delta^{15}N_{legume}$ is the $\delta^{15}N$ signature of the clover and B is defined as the $\delta^{15}N$ signature of a legume when dependent solely on atmospheric N_2 . B values were determined by growing crimson clover species in the greenhouse in a N-free medium following methods in Blesh (2018). After conducting two B-value experiments with crimson clover (one per site), we found an average B-value of -1.57, which we used in our calculation of %Ndfa. We estimated BNF (kg N ha⁻¹) by multiplying field values for aboveground biomass by shoot % N, and then by %Ndfa. The natural abundance method is generally considered reliable when the $\delta^{15}N$ signature of the legume and reference plants are separated by 2 % (Unkovich et al., 2008). At the *KBS* site, this criterion was met; however, we did not find adequate separation between the legume and reference species at *CF*. We therefore estimated BNF at *CF* using the mean %Ndfa values from *KBS* for clover in mixture and monoculture. Given this, we also conducted a sensitivity analysis to test how variation in %Ndfa at *CF* would affect model outcomes.

2.5 N₂O flux following soil disturbance

We used the static chamber method (Kahmark et al., 2018) to measure the first pulse of N₂O emissions in each field following tillage of all experimental plots. All measurements occurred between 9 am and noon. In *CF*, we measured N₂O once before and five times after cover crop incorporation over 18 days. In *KBS*, we measured N₂O seven times after cover crop incorporation over 15 days. These periods captured the main episode of N₂O flux following tillage and initial decomposition

© Author(s) 2022. CC BY 4.0 License.

160

165

170

of cover crop residues. During the N_2O measurement period, each site received the same amount of precipitation (15 mm) and had the same average temperature (20.6 °C).

Static chambers at *KBS* were made from stainless steel cylinders (diameter: 28.5 cm) and chambers at *CF* were made from Letica 3.5-gallon pails with the bottom removed to create a cylinder (diameter at top: 28.5 cm, diameter at bottom: 26 cm). Chamber lids were fitted with O-ring seals to create an airtight container during sampling. Each lid was equipped with a rubber septa port for extraction of gas samples. Before each sampling date, static chambers were installed in the ground and allowed to rest for at least 24 hours to reduce the impact of soil disturbance on measured emissions. The morning before each sampling event, the depth from the lip of the chamber to the ground was measured at three locations inside the chamber to calculate the internal volume. Lids were then placed securely on the chamber and 10 mL samples were extracted using a syringe every 20 minutes over a period of 60 minutes. Each 10 mL sample was stored, overpressurized, in a 5.9 mL, graduated glass vial with an airtight rubber septa (Labco Limited, Lampeter, UK). We analysed samples for N₂O using a gas chromatograph equipped with an electron capture detector (Agilent, Santa Clara, CA). N₂O flux was calculated as the change in headspace N₂O concentration over the 60-minute time-period. Each set of 4 data points (0, 20, 40, and 60 minutes) were analysed using linear regression and screened for non-linearity.

2.6 Data analysis

For all variables, we calculated descriptive statistics (mean, standard error, and IQRs) and checked all variables and models for normality of residuals and homoscedasticity. We transformed data using a log function for all variables. Within each site, we used repeated measures ANOVA models to test for differences in N₂O flux (g N₂O N ha⁻¹ day⁻¹) across treatments for all time points. Models included day as the repeated measure, cover crop treatment as the fixed effect, and block as the random effect. We estimated mean cumulative N₂O emissions (g N₂O N ha⁻¹) for all treatments by calculating the area under the curve (Gelfand et al., 2016) using the following Eq. (2):

180 Cumulative
$$N_2O$$
 Emissions = $\sum_{t_0}^{t_{final}} [(x_t + x_{t+1})/2] * [(t+1) - t]$, (2)

Where t_0 is the initial sampling date, t_{final} is the final sampling date, x_t is N_2O flux at time t, and x_{t+1} is N_2O flux at the following sampling date.

Within each site, we determined the effects of cover crop treatments on cumulative N₂O, total biomass (kg ha⁻¹), total biomass N (kg N ha⁻¹), the C:N ratio, clover N (kg N ha⁻¹), and BNF (kg N ha⁻¹) using separate ANOVA models for a randomized complete block design, with cover crop treatment as the fixed effect and block as the random effect. To understand the effects of cover crop treatments on all response variables across both sites, we used two-way ANOVA models with site and treatment as fixed effects, along with their interaction, and block nested in site as a random effect. For all ANOVAs, post-hoc comparison of least square means was performed using Tukey's HSD, and results were reported as statistically significant at either α =

© Author(s) 2022. CC BY 4.0 License.

190 0.05 or 0.1, for models including N₂O flux, following previous work identifying high variability from unidentified sources in ecological field experiments measuring N₂O emissions (Gelfand et al., 2016; Han et al., 2017). All statistical analyses were performed in JMP Pro 15 software (SAS Institute, Cary NC). Excel and JMP Pro 15 were used to make figures.

3 Results

205

210

3.1 Baseline Soil Fertility

The CF site had higher soil fertility compared to the KBS site (Table 1). Total organic C was 34% higher at CF (P = 0.0003). Similarly, we found that CF had significantly larger POM pools than KBS. The concentration of free particulate organic matter (fPOM) was 44% higher (P = 0.0109) and occluded particulate organic matter (oPOM) was 29% higher at CF (P = 0.0062). The fPOM N concentration was 30% higher at CF than EBS (P = 0.0413) and PMN was 46% higher at EE than at

200 3.2 Cover crop biomass and traits (C:N and BNF)

There was a significant effect of site (P = 0.0005), treatment (P < 0.0001) and an interaction effect between site and treatment (P = 0.0084) on total shoot biomass, which included both cover crops and weed species. Across all cover crop treatments, mean biomass was 40% higher at CF (5430.45 \pm 499.26 kg ha⁻¹) than at KBS (3259.96 \pm 289.65 kg ha⁻¹), with nearly three times more rye biomass and 1.5 times more mixture biomass at CF than KBS. At CF, rye biomass (7709 \pm 387 kg ha⁻¹) was 37% higher than biomass in the clover treatment (4846 \pm 477 kg ha⁻¹), and almost threefold higher than in the fallow (2775 \pm 245 kg ha⁻¹) (P < 0.0001). Rye and mixture (6392 \pm 206 kg ha⁻¹) were not significantly different from each other, nor were the mixture and clover treatments. At KBS, clover (3972 \pm 580 kg ha⁻¹) and mixture (4219 \pm 297 kg ha⁻¹) treatments had approximately twofold more biomass than the fallow (2006 \pm 388 kg ha⁻¹) (P = 0.0068). However, mixture and clover biomass did not differ significantly from rye (2842 \pm 212 kg ha⁻¹), and rye was not significantly different from fallow (Figure 1). At both sites, clover performed well in the mixture, representing 54% of the total mixture biomass at CF (Table A1).

We also found a significant effect of site (P = 0.0005), treatment (P < 0.0001), and a significant site by treatment interaction (P = 0.0484) on total shoot N (biomass N; including both cover crop and weed biomass). Across sites, there was two-fold higher biomass N at CF ($102.6 \pm 8.7 \text{ kg N ha}^{-1}$) than at KBS ($53.0 \pm 7.2 \text{ kg N ha}^{-1}$), with 68% higher biomass N in rye, 44% higher in mixture, and 56% higher in fallow at CF compared to KBS. At CF, there was a significant difference in biomass N between treatments, in which clover ($121.2 \pm 14.4 \text{ kg N ha}^{-1}$) accumulated twofold more N than the weeds in the fallow (59.0 $\pm 14.4 \text{ kg N ha}^{-1}$) (P = 0.0055); however, clover, mixture ($131.28 \pm 14.3 \text{ kg N ha}^{-1}$), and rye ($98.64 \pm 4.6 \text{ kg N ha}^{-1}$) treatments did not significantly differ from each other. At KBS, we found significantly higher aboveground N in the clover ($80.8 \pm 13.5 \text{ ma}^{-1}$)

https://doi.org/10.5194/bg-2022-39 Preprint. Discussion started: 21 February 2022 © Author(s) 2022. CC BY 4.0 License.

225

kg N ha⁻¹) and mixture (73.4 \pm 5.8 kg N ha⁻¹) treatments compared to the rye (31.9 \pm 1.4 kg N ha⁻¹) and weedy fallow (26.0 \pm 6.6 kg N ha⁻¹) (P < 0.0004) (Figure 1).

There was also a significant effect of site (P = 0.0014), treatment (P < 0.0001), and a significant interaction between site and treatment (P = 0.0052) on cover crop C:N. Across sites for all treatments combined, C:N was 26% higher at KBS (30.7 \pm 2.0) than CF (23.7 \pm 1.8). At CF, the C:N of rye biomass was 34.7 \pm 1.6, while the mixture had a significantly lower C:N (21.7 \pm 1.8). The mixture C:N did not differ from that in clover (17.2 \pm 0.67) or weeds in the fallow (21.1 \pm 1.6; P < 0.0001). At KBS, we also found a lower C:N in treatments with legumes (40.3 \pm 1.3 in rye and 34.8 \pm 1.9 in fallow vs. 25.6 \pm 1.1 in the mixture and 21.8 \pm 0.3 in clover; P < 0.0001). At KBS, the difference between clover and mixture was not significant.

Using stable isotope methods at KBS, we estimated that the clover shoot N derived from fixation was 62.1 % when grown alone and 60.2 % when grown in mixture with rye, which we applied to estimates of N supply from BNF at both sites. There was a weakly significant effect of site (P = 0.0526) on N supplied by BNF in clover, but no significant effect of treatment (P = 0.2565) and no significant interaction (P = 0.9361). Between sites, with mixture and clover treatments combined, aboveground N from BNF was 38 % higher at CF ($58.2 \pm 8.5 \text{ kg N ha}^{-1}$) than at KBS ($36.2 \pm 5.0 \text{ kg N ha}^{-1}$) (P = 0.0526). At EBS, BNF in clover ($41.9 \pm 8.7 \text{ kg N ha}^{-1}$) and mixture ($30.5 \pm 4.2 \text{ kg N ha}^{-1}$) were not significantly different (P = 0.3458). Similarly, at EE, clover ($66.28 \pm 11.9 \text{ kg N ha}^{-1}$) and mixture ($50.2 \pm 12.5 \text{ kg N ha}^{-1}$) supplied similar BNF inputs (P = 0.4897). In a sensitivity analysis for BNF at EE spanning EE

3.3 Effects of cover crop functional diversity on daily N_2O emissions

In the repeated measures model for daily N₂O flux at *CF*, we found a significant effect of cover crop treatment (*P* = 0.07), day (*P* < 0.0001), and a significant interaction between day and treatment (*P* = 0.005). At *KBS*, there was a significant effect of cover crop treatment (*P* = 0.0155) and day (*P* < 0.0001). Individual ANOVA models for each sampling date at *CF* showed that N₂O emissions were higher in the clover (4.5 ± 0.5 g N₂O N ha⁻¹), mixture (4.8 ± 1.3 g N₂O N ha⁻¹), and rye (7.7 ± 2.2 g N₂O N ha⁻¹) treatments than in the fallow (1.2 ± 0.3 g N₂O N ha⁻¹) at the baseline sampling point prior to tillage (*P* = 0.0017).

Six days after incorporating the cover crops by tillage, N₂O emissions in the clover treatment peaked at 55.1 ± 16.4 g N₂O N ha⁻¹, whereas fluxes in the other treatments had started to decline (Figure 2 A). On day six, emissions in the clover treatment were significantly higher than in the fallow (16.8 ± 6.2 g N₂O N ha⁻¹) (*P* = 0.032), whereas the mixture (21.0 ± 3.5 g N₂O N ha⁻¹) and rye (16.5 ± 2.2 g N₂O N ha⁻¹) treatments were not different from fallow. Emissions in the clover treatment remained elevated for the rest of the measurement period, however, the difference in emissions between clover, mixture, and rye treatments was not statistically significant on the last sampling date, 18 days after tillage (*P* = 0.15) (Figure 2 A).

© Author(s) 2022. CC BY 4.0 License.

255

270

At KBS, N₂O emissions were five times higher in the mixture $(18.0 \pm 5.6 \text{ g N}_2\text{O N ha}^{-1})$ than in rye $(3.6 \pm 1.0 \text{ g N}_2\text{O N ha}^{-1})$ at the peak flux eight days after tillage (P = 0.0487) and were also five times higher in mixture $(9.4 \pm 2.6 \text{ g N}_2\text{O N ha}^{-1})$ than the rye $(1.8 \pm 0.4 \text{ g N}_2\text{O N ha}^{-1})$ eleven days after tillage (P = 0.0178). Twelve days after tillage, emissions were four times higher in clover $(5.9 \pm 1.1 \text{ g N}_2\text{O N ha}^{-1})$ than rye $(1.5 \pm 0.6 \text{ g N}_2\text{O N ha}^{-1})$ (P = 0.018). By the fifteenth and last day, clover $(4.4 \pm 1.3 \text{ g N}_2\text{O N ha}^{-1})$ and mixture $(7.2 \pm 1.6 \text{ g N}_2\text{O N ha}^{-1})$ were higher than rye $(1.9 \pm 0.4 \text{ g N}_2\text{O N ha}^{-1})$ and fallow $(1.7 \pm 0.3 \text{ g N}_2\text{O N ha}^{-1})$ (P = 0.0073) (Figure 2 B).

3.4 Cumulative N₂O emissions

Both cover crop treatment (P = 0.0016) and site (P = 0.0037) had a significant effect on cumulative N₂O emissions, with no significant interaction (P = 0.1377). The mean N₂O flux following tillage was 1.8 times higher at CF (413 ± 67.5 g N₂O-N ha⁻¹ vs. 230 ± 42.5 g N₂O-N ha⁻¹; P = 0.0037), which had both higher rates of potentially mineralizable N and larger free and occluded POM fractions (Figure 3). On average across both sites, the clover (488.5 ± 129.4 g N₂O-N ha⁻¹) and mixture (388 ± 46.2 g N₂O-N ha⁻¹) treatments led to significantly higher emissions than the rye (193.0 ± 43.4 g N₂O-N ha⁻¹) and fallow (218.0 ± 52.5 g N₂O-N ha⁻¹), with clover producing more than 2.5 times and mixture 2 times higher emissions than rye (P = 0.0016). Emissions from clover and mixture were statistically similar, and emissions from rye and fallow also did not differ significantly.

When evaluating treatment effects within each site, at CF, cumulative N₂O flux tended to be lower in the fallow (291.5 ± 92.0 g N₂O-N ha⁻¹), rye (288.9 ± 48.1 g N₂O-N ha⁻¹), and clover-rye mixture (380.2 ± 44.4 g N₂O-N ha⁻¹) treatments compared to clover grown alone (692.9 ± 204.7 g N₂O-N ha⁻¹), although these differences were not statistically significant (P = 0.112). At KBS, cumulative N₂O fluxes were lower in the fallow (144.5 ± 28.2 g N₂O-N ha⁻¹) and rye (97.1 ± 18.3 g N₂O-N ha⁻¹) treatments compared to the clover-rye mixture (397.7 ± 89.1 g N₂O-N ha⁻¹) and clover grown alone (284.1 ± 91.5 g N₂O-N ha⁻¹) (P = 0.008). At this site, the mixture produced four times, and clover three times, higher emissions than rye (Figure 4).

3.5 N₂O fluxes normalized by soil fertility indicators or cover crop biomass

Given the contrasting soil fertility properties at the two experimental sites, we normalized N₂O emissions by POM levels and PMN rates (i.e., cumulative N₂O to POM, or PMN, ratios). When controlling for differences in soil fertility, all ratios had significant treatment effects, with clover resulting in the highest N₂O emissions at *CF* and mixture producing the highest emissions at *KBS* (Table 2). There was no significant effect of site on cumulative N₂O when expressed per unit fPOM or PMN. However, when normalizing for differences in oPOM, oPOM N, and fPOM N across sites, there was a significant site effect.

Specifically, compared to *KBS*, mean N₂O emissions at *CF* were 22% higher when normalizing for oPOM (*P* = 0.0112), 43% higher for oPOM N (*P* = 0.0013), and 26% higher for fPOM N (*P* = 0.0268). When normalized by POM fractions or PMN, the cumulative N₂O emissions across sites were 1.9 – 2.8 times higher in clover and mixture than in fallow or rye (Table 3).

https://doi.org/10.5194/bg-2022-39

Preprint. Discussion started: 21 February 2022

© Author(s) 2022. CC BY 4.0 License.

When N_2O was normalized by cover crop biomass, site was not significant (P = 0.1795), but we found a significant treatment effect (P = 0.0031) with lower emissions following rye than the other treatments. There was no effect of either treatment (P = 0.1712) or site (P = 0.4696) when expressing N_2O emissions as a ratio of cover crop biomass N (Table 4).

4 Discussion

285

290

295

300

305

310

Reducing greenhouse gas emissions from agriculture is necessary to meet global targets for limiting climate change (IPCC, 2019). Generally, greenhouse gas emissions are greater from grain agroecosystems with fertilizer additions compared to legume N sources (Robertson et al., 2014; Han et al., 2017; Westphal et al., 2018) and are higher in rotations with only annual crops compared to those with perennial crops (Gelfand et al., 2016). Overwintering cover crops can help "perennialize" annual agroecosystems by providing continuous plant cover, building soil organic C (King and Blesh, 2018) and supporting related functions such as soil nutrient supply and storage. In diversified rotations with cover crops, however, N₂O emissions can peak during the weeks following tillage when cover crop biomass is incorporated into the soil, increasing N mineralization rates (Han et al., 2017). Our experiment tested whether increasing cover crop functional diversity with a legume-grass mixture would reduce pulse N₂O emissions following cover crop incorporation by tillage at two field sites. Understanding these critical moments of N₂O flux can inform how to adapt management of diversified cropping systems to reduce N losses, and further reap their environmental benefits compared to fertilizer-based management practices.

4.1 Effects of cover crop functional diversity on N2O flux

The sampling period (15-18 days) of this experiment captured the first peak of N₂O emissions following tillage of cover crop biomass at both sites. Our analysis of cover crop treatment effects on cumulative N₂O emissions in this period shows the strong influence of biomass N inputs, particularly for the legume species, which supplied an external N source through BNF. When normalized for differences in soil fertility across sites, the clover and mixture treatments led to significantly higher pulse losses of N₂O than rye or fallow (Table 3), providing strong evidence that BNF inputs from the treatments that included clover were a driving factor of N₂O losses. While our study tested the role of legume N inputs, past meta-analyses have been dominated by studies with N inputs from synthetic fertilizer and manure sources (Han et al., 2017; Eagle et al., 2017; Basche et al., 2014). The only studies included in these meta-analyses that had legumes as the sole N source were Robertson et al. (2000) and Aluvione et al. (2010). Gelfand et al. (2016) extended the data reported in the Robertson et al. (2000) study by another decade and found that legume N sources did not significantly reduce N₂O fluxes from soil compared to fertilizer N sources. Our findings contribute evidence that legume cover crops release more N₂O compared to treatments without legumes, within the context of agroecosystems that have only received legume N inputs for several decades.

Despite clear differences between treatments with clover and those without, we did not find strong support for our hypothesis that the legume-grass mixture would reduce pulse N₂O flux. This may be explained by the lack of difference in total BNF

© Author(s) 2022. CC BY 4.0 License.

335

340

inputs between clover grown alone and in mixture within each site, as well as the similar C:N ratios of litter biomass in both treatments. Litter chemistry for clover and mixture both fell into the intermediate C:N range (17.2-25.6) expected to lead to net N mineralization, potentially increasing the soluble inorganic N pool and driving N₂O fluxes following tillage, compared to the much higher C:N range in rye (31.5 – 44.1) across sites, which likely led to net N immobilization (Robertson and Groffman, 2015; Kramberger et al., 2009; Rosecrance et al., 2000; Wagger et al., 1998).

320 When N₂O fluxes were normalized by aboveground biomass N inputs to soil, emissions were the same for all treatments regardless of the source of N (soil or external inputs of atmospheric N₂). Furthermore, we found that three times higher rye biomass N at CF corresponded with 1.6-2.6 times higher N₂O emissions when normalized to control for differences in multiple soil fertility parameters across the two sites. In the clover treatment, 1.5 times higher BNF inputs at CF corresponded with 1.2-2.3 times higher N₂O emissions when normalized for differences in soil fertility. The magnitude of new N inputs from BNF 325 was higher at CF, due to greater clover biomass in both treatments with clover, which corresponded with significantly higher emissions at that site. However, when N₂O fluxes were normalized by aboveground biomass across sites, emissions were significantly lower following rye than the other treatments, including weeds in the fallow, indicating that residue traits such as C:N influence N₂O emissions. Higher mean litter C:N in the rye litter compared to the treatments with clover may have reduced N₂O emissions per unit biomass input. These results reflect the importance of cover crop functional type, and the impact of 330 legume N inputs on episodic N₂O emissions, which is supported by prior studies showing that higher total N inputs lead to higher N mineralization rates and higher N₂O fluxes (e.g., Han et al., 2017) and that legume cover crops can lead to pulse N₂O fluxes following incorporation by tillage (Baggs et al., 2003; Millar et al., 2004; Basche et al., 2014).

Within each site, the specific treatment effects differed. At *CF*, the clover treatment produced the highest pulse of N₂O, while at *KBS*, the mixture produced the highest flux, with the magnitude of the treatment effect being much more pronounced. N₂O fluxes were four times higher following mixture than rye at *KBS*, compared to just over two times higher in clover than rye at *CF*, suggesting that the new N input from BNF was a stronger driver of treatment differences at *KBS*. At *CF*, the mixture did slightly reduce cumulative N₂O emissions compared to clover (380.2 v. 692.9 g N₂O-N ha⁻¹), a difference which was likely ecologically meaningful even though it was not statistically significant. In contrast, the mixture slightly increased mean N₂O at *KBS*, from 284.1 g N₂O-N ha⁻¹ in clover to 397.7 g N₂O-N ha⁻¹ in mixture; however, at this site both treatments with clover produced significantly higher N₂O emissions than the non-legume treatments. At both sites, the clover was competitive in mixture, representing just over half of the total stand biomass in this treatment. Given that mixture composition likely drives the quality of cover crop residue inputs to soil (Finney, White, and Kaye, 2016), there is a need for future studies to assess the effects of legume-grass mixtures across a wide range of contexts, with larger variation in mixture establishment and evenness.

© Author(s) 2022. CC BY 4.0 License.

350

355

360

365

370

375

345 4.2 Differences in N₂O flux between sites

The different treatment patterns for daily emissions between sites, and the larger pulse emissions overall at CF, both provide insights into mechanisms governing N_2O fluxes following cover crop incorporation. There is substantial evidence indicating that new N inputs to agroecosystems, and soil N mineralization rates, are primary drivers of soil N_2O emissions (e.g., Han et al., 2017, Robertson and Groffman, 2015). However, in our study, mean BNF inputs did not significantly differ between clover and mixture treatments; thus, the different baseline soil fertility levels, and plant-soil interactions that drive N mineralization, likely played a key role in the contrasting effects of the mixture across sites. For instance, prior studies have found positive correlations between total SOC and N_2O flux (Bouwman et al., 2002; Dhadli et al., 2016). In a meta-analysis of 26 studies, Basche et al. (2014) found that SOC and cover crop biomass had a significant effect on denitrification potential and N_2O emissions. These studies highlight that ecosystem state factors that influence fertility, such as soil parent material and organic C content, drive N_2O emissions.

Here, we found approximately twofold higher cumulative N_2O fluxes at the site with larger soil POM fractions and higher POM N concentrations (CF) (Figure 3), suggesting that POM fractions may influence cover crop growth and N_2O fluxes. POM fractions are robust indicators of soil fertility that respond to changes in management over shorter time scales than total SOM and play an important functional role in soil N cycling and N availability to crops (Wander, 2004; Luce et al., 2016). For instance, the *CF* site also had approximately twofold higher rates of N mineralization (PMN) compared to *KBS*. The total amount of soil N assimilated by cover crops (in the absence of external N inputs) is also an integrated indicator of soil inorganic N availability over the cover crop season. Rye aboveground biomass N was threefold higher at *CF*, while N in weed biomass in the fallow control was 2.3 times higher at *CF* than at *KBS*. In diversified agroecosystems, plant-mediated N acquisition from SOM pools can couple the release of inorganic N with plant N uptake in the rhizosphere, making organic N inputs, such as those from legume residues, less susceptible to loss than inorganic fertilizer inputs (Drinkwater and Snapp, 2007). When cover crops grow in higher fertility soils, they are thus likely to have higher net primary productivity, and to release more root C into the soil, which increases microbial growth and turnover rates, and mineralizes more soil N. The roots, in turn, take up more N and produce more biomass (Hodge et al., 2000; Paterson et al., 2006). This positive feedback loop may have led to the significantly higher cover crop biomass production at *CF*, which was especially pronounced in the rye treatment (7709 kg ha⁻¹ at *CF* compared to 2842 kg ha⁻¹ in at *KBS*).

Mechanistically, interactions between background soil fertility and cover crop functional types likely drive soil inorganic N availability and N_2O emissions. For instance, the highest N_2O emissions measured in our study were from the clover treatment at CF, which had both the highest new N inputs to soil from BNF and the largest POM pools. This site also showed a small reduction in emissions with the legume-grass mixture. After clover incorporation, the large, relatively labile C and N input to soil, in combination with larger background POM pools, may have primed greater overall N mineralization in CF compared

https://doi.org/10.5194/bg-2022-39 Preprint. Discussion started: 21 February 2022 © Author(s) 2022. CC BY 4.0 License.

380

385

390

395

400

405

to KBS, with some of this N lost as N_2O . Since corn had not yet established during this two-week time frame after tillage, there were no active roots to couple N release with N uptake, leaving a window of opportunity for N losses.

Even when controlling for fertility differences across sites (i.e., the analysis of N₂O to POM or PMN ratios), we found that cumulative N₂O emissions per unit oPOM, oPOM N, and fPOM N were significantly higher at *CF*. This site difference was highest for the oPOM N stock, with about 43% more emissions per oPOM N at *CF*. Prior studies have shown that oPOM N is a strong indicator of SOM quality, N fertility, and soil inorganic N availability from microbial turnover of SOM (Wander, 2004, Marriott and Wander, 2006; Blesh, 2019). Our contrasting findings across experimental sites indicate a need for future studies that assess the effects of cover crops on N₂O emissions across soils with a wide range of POM pool sizes.

4.3 Episodic N₂O emissions following tillage of cover crops

To understand the relative importance of N₂O fluxes following cover crop incorporation, it is important to interpret the magnitude of these episodic emissions within the context of N₂O fluxes for a complete crop rotation. In a 20-year study in the biologically-based cropping system in the MCSE at KBS (the KBS site in our experiment), Gelfand et al. (2016) reported mean annual N₂O emissions of approximately 1.08 kg N ha⁻¹ yr⁻¹ during a corn year, which was defined as the 380-day window between corn planting and soybean planting the following year. They also calculated an average of 2.2 kg N ha⁻¹ yr⁻¹ over the course of the three-year corn-soy-wheat crop rotation at this site (Gelfand et al., 2016). These values are likely a slight underestimate because their sampling did not include emissions during winter thaws, and occurred every 2 weeks, potentially missing periods of high emissions. In a meta-analysis, Han et al. (2017) reported a similar average annual N_2O flux of 2.3 – 3.1 kg N ha⁻¹ yr⁻¹ for annual cropping systems with inorganic fertilizer additions. Using Gelfand et al.'s estimate of 1.08 kg N ha⁻¹ yr⁻¹, the three-week cumulative flux we measured post-tillage of clover would represent 64% of crop year emissions at CF and 26% at KBS, while the flux following tillage of the mixture biomass would represent 35% of the crop year estimate at CF and 37% at KBS. Using the estimate of 2.2 kg N ha⁻¹ yr⁻¹ for the complete crop rotation, the three-week cumulative flux we measured post-tillage of clover would represent 31% of annual emissions at CF and 13% at KBS, while the flux following tillage of the mixture biomass is 17% of that annual estimate at CF and 18% at KBS. After incorporating sole clover biomass, the average daily flux was 36 g N ha⁻¹ d⁻¹ at CF and 19 g N ha⁻¹ d⁻¹ at KBS, and after mixture biomass, was 20 g N ha⁻¹ d⁻¹ at CF and 26 g N ha⁻¹ d⁻¹ at KBS which are approximately three- to twelve-fold greater than the annual average daily flux reported for the organic cropping system at KBS (Gelfand et al., 2016), highlighting the relative importance of these peak events. Given the large spatial and temporal variability in N₂O emissions, sampling frequently during the days and weeks following tillage of cover crops is therefore important for advancing knowledge of episodic emissions.

5 Conclusion

We tested the impacts of cover crop functional type on short-term N cycling dynamics following tillage in the context of diversified agroecosystems that rely on legume N. Given that gaseous N fluxes are episodic, it is critical to understand how they are influenced by management practices during periods of high susceptibility for N losses. Overall, N₂O flux was higher in the clover and mixture treatments than in rye and fallow when emissions were normalized by soil fertility properties. We found that the functionally-diverse legume-grass cover crop led to a small reduction in N₂O losses at *CF* but not at *KBS*. In contrast to our hypothesis, at *KBS*, the mixture led to higher N₂O emissions than the clover treatment at peak flux following tillage. We also found a more pronounced treatment effect at *KBS*, indicating that new N inputs from both treatments with legumes were a larger driver of N₂O emissions at the site with lower soil fertility. Overall, the clover treatment at *CF* led to the highest emissions across sites, suggesting a synergistic effect of BNF inputs and soil fertility on N₂O. These contrasting findings across sites shed light on the drivers of N₂O losses following cover crop incorporation. Our results show that higher aboveground cover crop biomass can lead to higher N₂O emissions during cover crop decomposition, particularly for cover crops that include legumes.

420

430

435

410

415

Data availability: Portions of the data used in this paper are being used to prepare other manuscripts and will be available in Deep Blue Repositories at https://doi.org/10.7302/hv7v-4378 in January 2023.

Author contribution: AB and JB developed the research questions, experimental design, and methods. AB conducted the field and lab work and led data analysis with input from JB. AB and JB wrote and edited the manuscript.

425 **Competing interests:** The authors declare that they have no conflict of interest.

Acknowledgments: We thank Brendan O'Neill and Kevin Kahmark for assistance with the N₂O sampling protocol, Jeremy Moghtader and Joe Simmons for managing field operations, and Beth VanDusen for technical support in the field and the lab. We would also like to thank Dev Gordin, Kent Connell, Marta Plumhoff, Etienne Herrick, Luyao Li, Nicole Rhoads, Kristen Hayden, Danielle Falling, Riley Noble, Alice Elliott, Ben Iuliano, Dahlia Rockowitz, Ellie Katz, Naveen Jasti, and Nisha Gudal for assistance in the field and lab, and Don Zak for input on a draft of the manuscript. Support for this research was also provided by the NSF Long-term Ecological Research Program (DEB 1832042) at the Kellogg Biological Station and by Michigan State University AgBioResearch.

Financial support: This work was supported by Research Funding for Conservation Studies from the Matthaei Botanical Gardens, University of Michigan, a Rackham Graduate Student Research Grant from the University of Michigan, and a United States Department of Agriculture (USDA) NIFA grant (Award #: 2019-67019-29460).

References

- Alluvione, F., Bertora, C., Zavattaro, L., and Grignani, C.: Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn, Soil Sci. Soc. Am. J., 74, 384-395, https://doi.org/10.2136/sssaj2009.0092, 2010.
- Baggs, E. M., Stevenson, M., Pihlatie, M., Regar, A., Cook, H., and Cadisch, G.: Nitrous oxide emissions following application of residues and fertilizer under conventional tillage. Plant Soil, 254, 361-370, zero and https://doi.org/10.1023/A:1025593121839, 2003. 445
 - Basche, A. D., Miguez, F. E., Kasper, T. C., and Castellano, M. J.: Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis, J. Soil Water Conserv., 69(6), 471-482, https://doi.org/10.2489/jswc.69.6.471, 2014.
- 450 Blesh, J.: Feedbacks between nitrogen fixation and soil organic matter increase ecosystem functions in diversified agroecosystems, Ecol. Appl., e01986, https://doi.org/10.1002/eap.1986, 2019.
 - Blesh, J., and Drinkwater, L. E.: The impact of nitrogen source and crop rotation on nitrogen mass balances in the Mississippi River Basin, Ecol. Appl., 23, 1017-1035, https://doi.org/10.1890/12-0132.1, 2013.
- Blesh, J., VanDusen, B. M., and Brainard, D. C.: Managing ecosystem services with cover crop mixtures on organic farms, Agron. J., 111, 1-15, https://doi.org/10.2134/agronj2018.06.0365, 2019.
- Bressler, A., and Blesh, J.: Data from: Episodic N₂O emissions following tillage of a legume-grass cover crop mixture, Deep Blue Data, https://doi.org/10.7302/hv7v-4378, 2023.
 - Bouwman, A. F., Boumans, L. J. M., and Batjas, N. H.: Emissions of N_2O and NO from fertilized fields: Summary of available measurement data, Global Biogeochem. Cy., 16(4), 1058, https://doi.org/10.1029/2001GB001811, 2002.
- 465 Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil carbon storage informed by particulate and mineral-associated organic matter, Nat. Geosci., 12, 989-994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
 - Crum, J. R., and Collins, H. P.: KBS Soils. Kellogg Biological Station Long-term Ecological Research Special Publication. Zenodo, http://doi.org/10.5281/zenodo.2581504, 1995.

470

de Figueiredo, C. C., de Oliveira, A. D., Dos Santos, I. L., Ferreira, E. A. B., Malaquias, J. V., de Sá, M. A. C, de Carvalho, A. M., and Dos Santos, J. D. G. Jr.: Relationships between soil organic matter pools and nitrous oxide emissions of agroecosystems in the Brazilian Cerrado, Sci. Total Environ., 618, 1572-1582, https://doi.org/10.1016/j.scitotenv.2017.09.333, 2018.

475

Dhadli, H., Brar, B. S., and Black, T. A.: N2O emissions in a long-to-

Dhadli, H., Brar, B. S., and Black, T. A.: N2O emissions in a long-term soil fertility experiment under maize-wheat cropping system in Northern India, Geoderma Reg., 7, 102-109, https://doi.org/10.1016/j.geodrs.2016.02.003, 2016.

Drinkwater, L. E., Wagoner, P., and Sarrantonio, M.: Legume-based cropping systems have reduced carbon and nitrogen

480 losses, Nature, 396, 262-264, https://doi.org/10.1038/24376, 1998.

Drinkwater, L. E., and Snapp, S. S.: Understanding and managing the rhizosphere in agroecosystems, in: The Rhizosphere: An Ecological Perspective, edited by Cardon, Z. G., and Whitbeck, J. L., Elsevier Inc., 127-153, https://doi.org/10.1016/B978-

0-12-088775-0.X5000-9, 2007.

485

Eagle, A. J., Olander, L. P., Locklier, K. L., Heffernan, J. B., and Bernhardt, E. S.: Fertilizer management and environmental factors drive N₂O and NO₃- losses in corn: a meta-analysis, Soil Sci. Soc. Am. J., 81, 1191-1202, https://doi-

org/10.2136/sssaj2016.09.0281, 2017.

490 Eagle, A. J., McLellan, E. L., Brawner, E. M., Chantigny, M. H., Davidson, E. A., Dickey, J. B.,

Linquist, B. A., Maaz, T. M., Pelster, D. E., Pittelkow, C. M., van Kessel, C., Vyn, T. J., and Cassman, K. G.: Quantifying onfarm nitrous oxide emission reductions in food supply chains. *Earth's Future*, 8,

e2020EF001504, https://doi.org/10.1029/2020EF001504, 2020.

Finney, D. M., White, C. M., and Kaye J. P.: Biomass production and carbon/nitrogen ratio influence ecosystem services from

cover crop Mixtures, Agron. J., 108(1), 39-52, https://doi-org/10.2134/agronj15.0182, 2016.

Gaillard, R., Duval, B. D., Osterholz, W. R., and Kucharik, C. J.: Simulated effects of soil texture on nitrous oxide emission

factors from corn and soybean agroecosystems in Wisconsin. J. Environ. Qual., 45, 1540-1548,

500 https://doi.org/10.2134/jeq2016.03.0112, 2016.

Gartner, T. B., Cardon, X. G.: Decomposition dynamics in mixed-species leaf litter, Oikos, 104, 230-246,

https://doi.org/10.1111/j.0030-1299.2004.12738.x, 2004.

© Author(s) 2022. CC BY 4.0 License.

525

- Gelfand, I., Shcherbak, I., Millar, N., Kravchenko, A. N., and Robertson, G. P.: Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA, Glob. Change Biol., 22, 3594-3607, https://doi.org/10.1111/gcb.13426, 2016.
- IPCC.: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., In press, 2019.
- Han, Z., Walter, M. T., and Drinkwater, L. E.: N2O emissions from grain cropping systems: a meta-analysis of the impacts of fertilizer-based and ecologically-based nutrient management strategies, Nutr. Cycl. Agroecosys., 107(3), 335-355, https://doi.org/10.1007/s10705-017-9836-z, 2017.
- Hodge, A., Stewart, J., Robinson, D., Griffiths, B. S. and Fitter, A. H.: Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity, J. Ecol., 88, 150-164, http://www.jstor.org/stable/2648492, 2000.
 - Huang, Y., Zou, J. W., Zheng, X. H., Wang, Y. S., Xu, X.K.: Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios, Soil Biol. Biochem., 36(6), 973-981, https://doi.org/10.1016/j.soilbio.2004.02.009, 2004.
- Kahmark, K., Millar, N., and Robertson, G. P.: Greenhouse gas fluxes—static chamber method. Michigan State University Kellogg Biological Station, https://lter.kbs.msu.edu/protocols/113, 2018.
- Kaye, J., Finney, D., White, C., Bradley, B., Schipanski, M., Alonso-Ayuso, M., Hunter, M., Burgess, M., and Mejia, C.: Managing nitrogen through cover crop species selection in the U.S. mid-Atlantic, PLoS ONE, 14(4), e0215448, https://doi.org/10.1371/journal.pone.0215448, 2019.
 - Kramberger, B., Gselman, A., Janzekovic, M., Kaligaric, M., and Bracko, B.: Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of corn. Eur. J. Agron., 31, 103-109, https://doi.org/10.1016/j.eja.2009.05.006, 2009.
 - Luce, M. St. Whalen, J. K., Ziadi, N., and Zebarth, B. J.: Net nitrogen mineralization enhanced with the addition of nitrogen rich particulate organic matter, Geoderma, https://doi-org.proxy.lib.umich.edu/10.1016/j.geoderma.2015.08.017, 262, 112-118, 2015.

555

- Marriott, E. E., and Wander M. M.: Total and labile soil organic matter in organic and conventional farming systems, Soil Sci. Soc. Am. J., 70(3), 950-959, https://doi.org/10.2136/sssaj2005.0241, 2006.
 - Melillo, J. M., Aber, J. D., and Muratore, J. F.: Nitrogen and lignin control of hardwood leaf litter decomposition dynamics, Ecology, 63, 621-626, https://doi.org/10.2307/1936780, 1982.
 - Millar, N., Ndufa, J. K., Cadisch. G., and Baggs, E. M.: Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics, Global Biogeochem. Cycles, 18, GB1032, 1-9. https://doi.org/10.1029/2003GB002114, 2004.
- Millar, N., Robertson, G.P., Grace, P.R., Gehl, R., and Hoben, J.: Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (maize) production: an emissions reduction protocol for US Midwest agriculture, Mitig. Adapt. Strat. Gl., 15, 185–204, https://doi.org/10.1007/s11027-010-9212-7, 2010.
 - Nadelhoffer, N. J., Aber, J. D., Melillo, J. M.: Seasonal patterns of ammonium and nitrate uptake in nine temperate forest ecosystems, Plant Soil, 80, 321-335, https://www.jstor.org/stable/42935521, 1984.
- Norskov, J., and Chen, J.: Sustainable Ammonia Synthesis, US DoE Round Table Report, https://www.osti.gov/servlets/purl/1283146, 2016.
- Ostrom, N. E., Sutka, R. L., Ostrom, P. H., Grandy, A. S., Huizinga, K. H., Gandhi, H., von Fisher, J. C., and Robertson, G. P.: Isotopologue data reveal denitrification as the primary source of N2O upon cultivation of a native temperate grass-land, Soil Biol. Biochem., 42, 499-506, https://doi.org/10.1016/j.soilbio.2009.12.003, 2010.
 - Paterson, E., Sim, A., Standing, D., Dorward, M., and McDonald A. J. S.: Root exudation from hordeum vulgare in response to localized nitrate supply, J. Exp. Bot., 57(10), 2413-2420, https://doi.org/10.1093/jxb/erj214, 2006.
- Robertson, G. P., Coleman, D. C., Bledsoe, C. S., and Sollins, P.: Standard Soil Methods for Long-Term Ecological Research. Long-Term Ecological Research Network Series. Oxford University Press, New York, 1999.
- Robertson, G. P., Paul, E. A., and Harwood, R. R.: Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere, Am. Assoc. Adv. Sci., 289 (5486), 1922-1925, http://www.jstor.org/stable/3077685, 2000.

590

Robertson, G. P., and Vitousek, P. M.: Nitrogen in agriculture: balancing the cost of an essential resource, Annu. Rev. Env. Resour., 34, 97-125, https://doi.org/10.1146/annurev.environ.032108.105046, 2009.

- Robertson, G. P., Gross, K. L., Hamilton, S. K., Landis, D. A., Schmidt, T. M., Snapp, S. S., and Swinton, S. M.: Farming for ecosystem services: an ecological approach to production agriculture, Bioscience, 64(5), 404-415, https://doi.org/10.1093/biosci/biu037, 2014.
- Robertson, G. P., and Groffman, P. M.: Nitrogen transformations, in: Soil Microbiology, Ecology, and Biochemistry, 4th ed., edited by: Paul, E. A., Academic Press, Burlington, MA, 421-446, 2015.
- Rosecrance, R. C., McCarty, G. W. Shelton D. R., and Teasdale, J. R.: Denitrification and N mineralization from hairy vetch (Vicia villosa Roth) and rye (Secale cereale L.) cover crop monocultures and bicultures, Plant Soil, 227, 283-290, https://doi.org/10.1023/A:1026582012290, 2000.
 - Saha, D., Kaye, J.P., Bhowmik, A., Bruns, M. A., Wallace, J. M., and Kemanian, A. R.: Organic fertility inputs synergistically increase denitrification-derived nitrous oxide emissions in agroecosystems, Eco, Appl., 31(7), e02403, https://doi.org/10.1002/eap.2403, 2021.
 - Syswerda, S. P., Basso, B., Hamilton, S. K., Tausig, T. B., and Robertson, G. P.: Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA, Agric. Ecosyst. Environ., 149, 10-19, https://doi.org/10.1016/j.agee.2011.12.007, 2012.
- Tonitto, C., David, M. B., and Drinkwater, L. E.: Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics, Agric. Ecosyst. Environ., 112, 58-72, https://doi.org/10.1016/j.agee.2005.07.003, 2006
- Unkovich, M., Herridge, D., Peoples, M. Cadisch, G., Boddey, B., Giller, K., Alves, B., and Chalk,: Measuring plant-associated nitrogen fixation in agricultural systems, Australian Centre for International Agricultural Research, Canberra, Australia, http://hdl.handle.net/102.100.100/121643?index=1, 2008.
 - USEPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019, Agriculture, Washington, D.C., 2021.
- Wagger, M. G., Cabrera, M. L., and Ranells, N. N.: Nitrogen and carbon cycling in relation to cover crop residue quality. J. Soil Water Conserv., 53(3), 214-218, https://www.jswconline.org/content/53/3/214, 1998.

Wagner-Riddle, C., Baggs, E. M., Clough, T. J., Fuchs, K., and Peterson, S. O.: Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: managing hot spots and hot moments, Curr. Opin. Environ., 47, 46-53, https://doi.org/10.1016/j.cosust.2020.08.002, 2020.

Westphal, M., Tenuta, M., and Entz M. H.: Nitrous oxide emissions with organic crop production depends on fall soil moisture, Agric. Ecosyst. Environ., 254, 41-49, https://doi.org/10.1016/j.agee.2017.11.005, 2018.

White, C.M., DuPont, S.T., Hautau, M., Hartman, D., Finney, D. M., Bradley, B., LaChance, L. C., and Kaye, J. P.: (2017) Managing the trade-off between nitrogen supply and retention in cover crop mixtures, Agric. Ecosyst. Environ., 237, 121-133, https://doi.org/10.1016/j.agee.2016.12.016, 2017.

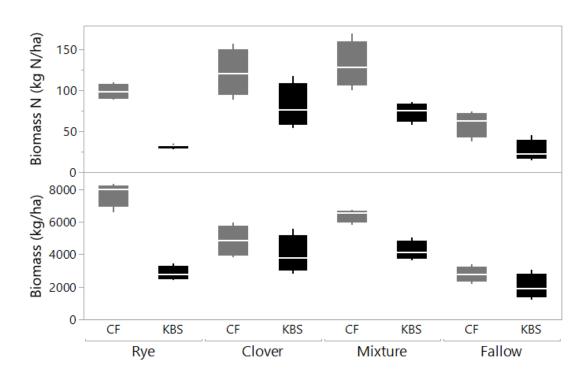


Figure 1: Biomass (kg/ha) and biomass N (kg N/ha) by treatment (including cover crops and weeds), at two sites (CF and KBS).

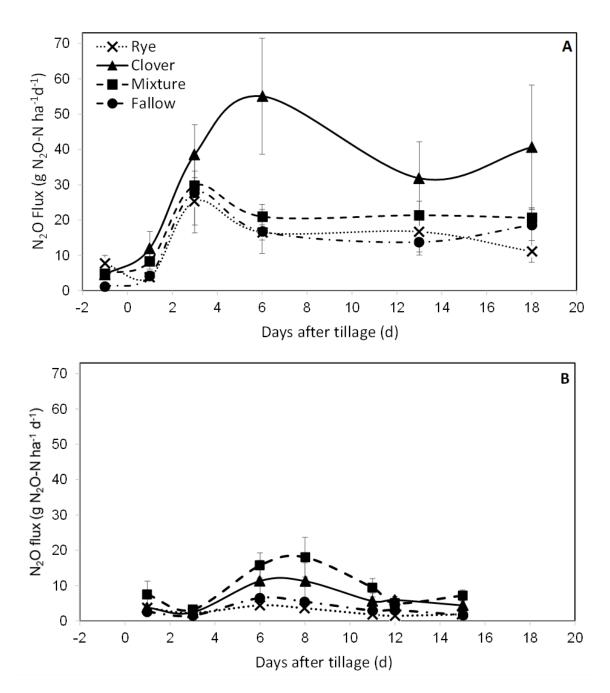
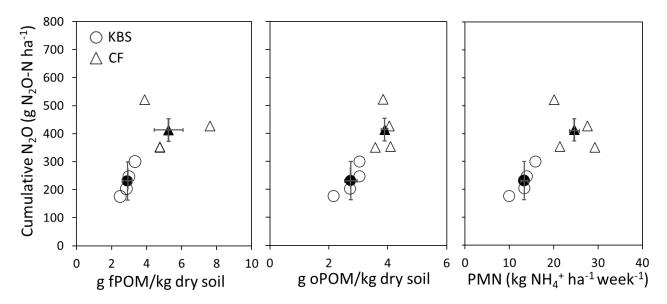
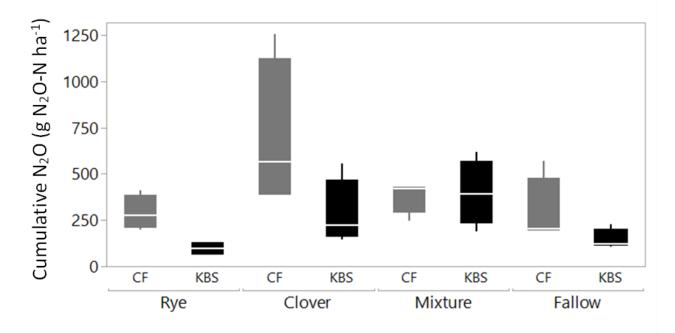




Figure 2: A: Mean net nitrous oxide (N_2O) flux from the soil (with standard error) over 18 days at CF, measured once the day before (d=-1) tillage on 23 May 2018 (d=0), and then five times following tillage and incorporation of cover crop biomass. B: Mean net nitrous oxide (N_2O) flux from the soil (with standard error) over 15 days at KBS, measured seven times following tillage on 26 May 2020 (d=0).

630 Figure 3: Cumulative N₂O plotted against fPOM (g kg⁻¹), oPOM (g kg⁻¹), and PMN (kg NH₄⁺ N ha⁻¹ week⁻¹) at both sites (*KBS* and *CF*). Open symbols are values by replicate block and closed symbols are overall site means. Error bars represent standard error of the means for each site.

635 Figure 4: Cumulative N₂O flux by treatment, compared between sites.

		CF	1	KBS
Soil Series		Fox	Kalamazo	& Oshtemo
	Mean	Std. Error	Mean	Std. Error
*Bulk Density	1.48	0.02	1.58	0.02
**% Sand	65.00	1.29	41.30	2.06
% Clay	21.50	0.96	19.40	1.33
**% Silt	13.50	0.50	39.30	2.40
рН	6.35	0.20	6.59	0.07
**Total Organic Carbon (Mg ha ⁻¹)	44.39	1.81	29.44	1.01
**Total Organic Nitrogen (Mg ha ⁻¹)	3.83	0.10	2.81	0.06
*Phosphorus (mg P kg ⁻¹)	16.00	1.91	9.31	1.85
Potassium (mg K kg ⁻¹)	62.25	5.31	60.19	3.18
*oPOM (mg kg ⁻¹)	3.89	0.05	2.75	0.14
oPOM N (mg N kg ⁻¹)	63.20	1.05	56.93	2.95
*fPOM (mg kg ⁻¹)	5.26	0.36	2.92	0.13
*fPOM N (mg N kg ⁻¹)	62.31	3.69	43.54	2.11
*PMN (kg NH $_4$ ⁺ N ha $^{-1}$ week $^{-1}$)	24.62	1.01	13.34	0.90

Table 1: Soil fertility indicators at each site. P-values are indicated as: * <0.05, ** <0.001 for differences between sites.

645

640

650

		N ₂ O/	N ₂ O/	N ₂ O/	$N_2O/$	N ₂ O/
Site	Treatment	fPOM*	oPOM*^	fPOM N*^	oPOM N*^	PMN**
	Rye	0.19 ± 0.03	0.25 ± 0.04	16.12 ± 3.08	15.36 ± 2.35	12.09 ± 2.48
	Clover	0.51 ± 0.19	0.60 ± 0.18	41.44 ± 14.96	37.82 ± 11.77	29.95 ± 11.04
CF	Clover-Rye	0.26 ± 0.04	0.33 ± 0.03	21.38 ± 3.31	20.27 ± 2.15	16.17 ± 2.84
	Fallow	0.17 ± 0.03	0.25 ± 0.08	14.94 ± 2.53	15.26 ± 4.29	11.67 ± 3.06
	Rye	0.10 ± 0.02	0.13 ± 0.02	6.65 ± 1.38	5.82 ± 0.82	7.43 ± 1.14
	Clover	0.30 ± 0.09	0.34 ± 0.10	19.81 ± 6.54	15.80 ± 4.66	23.61 ± 6.49
KBS	Clover-Rye	0.50 ± 0.12	0.47 ± 0.11	32.64 ± 8.50	22.00 ± 5.44	33.41 ± 7.85
	Fallow	0.16 ± 0.03	0.15 ± 0.03	10.50 ± 1.97	7.00 ± 1.39	9.33 ± 1.55

Table 2: Mean \pm standard error for ratios of g N₂O/g POM and g N₂O/kg PMN by treatment and site. P-values are indicated as: * <0.05, ** <0.001 for differences between treatments, and ^ <0.05 for differences between sites.

	N ₂ O/	N ₂ O/	N ₂ O/	N ₂ O/	N ₂ O/
Treatment	fPOM	oPOM	fPOM N	oPOM N	PMN
Rye	$0.15 \pm 0.03b$	$0.19 \pm 0.03b$	$11.39 \pm 2.37b$	$10.59 \pm 2.14b$	$9.76 \pm 1.54b$
Clover	$0.40 \pm 0.11a$	$0.47 \pm 0.11a$	$30.63 \pm 8.59a$	$26.81 \pm 7.19a$	$26.78 \pm 6.05a$
Clover-Rye	$0.38 \pm 0.08a$	$0.40 \pm 0.06a$	$27.01 \pm 4.73a$	$21.13 \pm 2.73a$	$24.79 \pm 5.05a$
Fallow	$0.17 \pm 0.02b$	$0.20 \pm 0.04b$	$12.72 \pm 1.71ab$	$11.13 \pm 2.61b$	$10.50 \pm 1.65b$

Table 3: Mean \pm standard error for ratios of g N₂O/g POM and g N₂O/ kg PMN averaged across both sites by treatment. Significant treatment differences are indicated by different letters.

Treatment	N ₂ O/biomass	N ₂ O/biomass N
Rye	$0.036 \pm 0.0049b$	$2.98 \pm 0.34a$
Clover	$0.12 \pm 0.034a$	$5.12 \pm 1.48a$
Clover-Rye	$0.076 \pm 0.011a$	$4.17 \pm 0.70a$
Fallow	$0.087 \pm 0.012a$	$5.37 \pm 0.60a$

Table 4: Mean \pm standard error for ratios of g N_2O to kg cover crop biomass and g N_2O to kg cover crop biomass N averaged across both sites by treatment. Significant treatment differences are indicated by different letters.

Appendix A

CF	All Cover	er Crops		Clover		Rye	в	Weeds	qs
	Biomass	Biomass N	Biomass	Biomass N	BNF	Biomass	Biomass N	Biomass	Biomass N
	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$	$(kg\ N\mathrm{ha}^{-1})$	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$
Rye	7709.1	9.86				7250.9	89.2	458.2	9.4
	(387.2)	(4.6)				(341.7)	(7.6)	(201.3)	(4.1)
Clover	4845.8	121.2	4294.6	106.7	66.3 (11.9)			551.2	14.5
	(477.9)	(14.4)	(680.5)	(19.2)				(284.3	(6.5)
Mixture	6392.4	131.3	3371.9	83.3 (20.7)	50.2 (12.5)	2863.5	43.9	157.0	4.1
	(205.8)	(14.4)	(702.6)			(495.4)	(9.9)	(70.4)	(1.8)
Fallow	2774.5	59.0						2774.5	59.0
	(245.1)	(7.9)						(245.1)	(7.9)

KBS	All Cova	All Cover Crops		Clover		Rye	e	We	Weeds
	Biomass	Biomass N	Biomass	Biomass N	BNF	Biomass	Biomass N	Biomass	Biomass N
	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$	$(kg\ N\ ha^{-1})$	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$	$(kg \text{ ha}^{-1})$	$(kg N ha^{-1})$
Rye	2842.8	31.9				2367.7	25.4	475.2	6.5
	(212.2)	(1.4)				(161.8)	(0.5)	(86.6)	(1.1)
Clover	3972.1	80.8 (13.5)	2963.9	67.5 (14.0)	41.9 (8.7)			1008.19	13.3114
	(579.7)		(654.8)					(90.4)	(1.2)
Mixture	4219.1	73.4	2310.0	50.6 (7.0)	30.5 (4.2)	1148.9	13.1	760.3	9.6
	(297.2)	(5.8)	(380.7)			(300.9)	(3.6)	(43.3)	(0.0)
Fallow	2005.8	26.0						2005.8	26.0
	(387.9)	(9.9)						(387.9)	(9.9)

ë

Table A1: Means (standard error) for aboveground biomass, biomass nitrogen, and biological nitrogen fixation (BNF) by species across treatments at CF (A) and KBS (B).

680

685

690

		BNF (N kg ha ⁻¹)	BNF (N kg ha ⁻¹)	BNF (N kg ha ⁻¹)
Treatment	Block	@ 50 %Ndfa	@ 60 %Ndfa	@ 70 %Ndfa
	1	44.10	52.92	61.74
	2	63.91	76.69	89.48
Clover	3	56.02	67.22	78.43
	4	78.44	94.13	109.81
	Mean (std. error)	60.6 (7)	72.7 (8)	84.9 (10)
	1	41.38	49.65	57.93
	2	40.87	49.05	57.22
Mixture	3	67.53	81.04	94.55
	4	16.85	20.22	23.59
	Mean (std. error)	41.7 (10)	50.0 (12)	58.3 (14)

Table A2: Sensitivity analysis for the *CF* site where we estimated %Ndfa at 50, 60, and 70 for the clover grown alone and in mixture. We used the estimate of 60 %Ndfa in our analysis.